NXA Series Phase Noise Analyzer 2 MHz to 6.2 / 26 / 50 GHz

Datasheet





The NXA is the most advanced Phase Noise Analyzer with unique capabilities as summarized below:

|                                | Phase<br>Noise | Amplitude<br>Noise | Absolute<br>Noise | Allan<br>Variance | Jitter | Low<br>Spurious |
|--------------------------------|----------------|--------------------|-------------------|-------------------|--------|-----------------|
| Absolute for<br>1 port DUT     | Yes            | Yes                | Yes               | Yes               | Yes    | Yes             |
| Residual for<br>2 ports DUT    | Yes            | Yes <sup>(1)</sup> | No                | Yes               | Yes    | Yes             |
| Continuous<br>Wave             | Yes            | Yes                | n.a.              | Yes               | Yes    | Yes             |
| Pulsed<br>Carrier              | Yes            | Yes                | n.a.              | Yes               | Yes    | Yes             |
| INT/EXT<br>Reference<br>Source | Yes            | Yes <sup>(1)</sup> | n.a.              | Yes               | Yes    | Yes             |
| INT/EXT<br>Detectors           | Yes            | Yes                | n.a.              | Yes               | Yes    | Yes             |

(1) in-phase residual noise technique for 2 ports DUTs measures absolute AM noise.

The NXA measures phase or amplitude noise on continuous or pulsed signals (gated CW) with the help of external low-pass video filters; the user can select to work on

CW signals or pulsed. This selection is available for all modes excepted for Analog Baseband (absolute noise voltage) measurements.

The NXA operation is simplified compared to traditional Phase Noise Test Systems thanks to the use of a large touchscreen interface.



The NXA can use its internal synthesizers or use external reference oscillators or synthesizers in order to speed-up measurement time. The NXA can also use external phase detector to extend its frequency coverage to any requirement, only limited by the customer supplied phase detectors or reference sources frequency coverage.



### **RF Input Port**

| Description             | Specification                                          |
|-------------------------|--------------------------------------------------------|
| RF IN connector         | Type-N F(NXA-6/26) or 1.85mm (NXA-50), 50 ohms nominal |
| RF IN frequency range   | 2 MHz to 6.2 / 26 / 50 GHz <sup>(1)</sup>              |
| RF IN measurement level | -30 dBm to +20 dBm (<200 MHz)                          |
|                         | -20 dBm to +20 dBm (<1 GHz)                            |
|                         | -10 dBm to +20 dBm (<1.4 GHz)                          |
|                         | 0 dBm to +15dBm (<9.99 GHz)                            |
|                         | +5 dBm to +15dBm (>9.99 GHz)                           |
| RF Input Gain           | -10 / 0 / +10 / +20 dB (2MHz to 1.4 GHz only)          |
| Input damage level      | AC > +23dBm, 0V DC max (hybrid couplers)               |

(1) Maximum frequency depends on model type

## Phase Noise Analyzer performance

| Description                        | Specification                                                                                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF IN frequency range              | 2 MHz to 6.2 / 26 / 50 GHz <sup>(1)</sup>                                                                                                                                          |
| Measurement frequency bands        | 2-1400 MHz, 1.4 to 9.99 GHz, 9.99 GHz to max frequency                                                                                                                             |
| Measurement parameters             | SSB noise (dBc/Hz), Spurious (dBc), Integrated phase deviation (dBc, deg, rad), Jitter (s, UI), Residual FM (Hz)                                                                   |
| Number of traces                   | 10 data traces in 10 memories with access to all math tools                                                                                                                        |
| Number of markers                  | 7 tracking independently any trace                                                                                                                                                 |
| Measurement trigger                | Manual through GUI, Remote through Ethernet                                                                                                                                        |
| Offset frequency range             | 0.01 Hz to 1 MHz (Fc <80 MHz)<br>0.01 Hz to 40 MHz (Fc>80 MHz)                                                                                                                     |
| Phase Noise uncertainty            | +/- 4 dB for 0.01 to 10 Hz offset<br>+/- 3 dB for 10 to 100 Hz offset<br>+/- 2 dB for 100 Hz to 100 kHz<br>+/- 3 dB for 100kHz to 40 MHz                                           |
| SSB noise sensitivity              | See Table for complete values                                                                                                                                                      |
| IF gain setting                    | 0 to +90 dB in 10 dB step (automated)<br>+20 to +40 dB in Pulsed PM for Kphi meas                                                                                                  |
| Enhanced sensitivity               | Cross-correlation method available in all modes<br>1 to 100,000 averages<br>Independent setting per offset decade                                                                  |
| Reference Local Oscillator         | Internal Synthesizers or External Sources                                                                                                                                          |
| Residual spurious response level   | <-100 dBc above 10kHz offset (external sources)<br><-80 dBc 1k to 10 kHz (external sources)<br><-70 dBc above 10kHz (internal sources)<br><-60 dBc 1k to 10 kHz (internal sources) |
| Spurious detection Algorithm       | Normal<br>Enhanced for High Resolution mode<br>2D mode for faster noise floor improvement <sup>(2)</sup>                                                                           |
| Measurement time                   | See time table                                                                                                                                                                     |
| Resolution Bandwidth               | Variable settings in each independent decade<br>Lowest offsets: 4 mHz min<br>1MHz offset: 2 Hz min<br>High offsets: 45 Hz min<br>See RBW graph below                               |
| Internal Synthesizers output power | +12 dBm +/- 3 dB                                                                                                                                                                   |

Maximum frequency depends on model type
Patent pending



NXA Series Instantaneous Resolution Bandwidth

1- to allow perfect detection with a RefSpur of 10dB, the resolution bandwidth has to be lower than 10 Hz

2- RBW lower than 1 Hz are not useful to detect spurious as it corresponds to the same level as the phase noise plot. However the user should pay attention at the RBW at high offsets.

The accuracy of the instrument to report correct phase noise points at various offsets is calibrated using a swept spurious that generates a flatness response calibration table. This is done per decade and for various IF gains values.

A simple verification can be done using a commercial Signal Generator with built-in White Gaussian frequency noise modulation. Below is the result of the test with the modulation ON and OFF. The correct response is a 20dB slope straight line through the display.



Linearity check at 1GHz with white FM modulation on signal generator

#### Low Frequency band Phase Noise Sensitivity

| dBc/Hz vs offset (Hz)       | 1    | 10   | 100  | 1k   | 10k  | 100k | 1M   | 10M  | 40M  |
|-----------------------------|------|------|------|------|------|------|------|------|------|
| External Source noise floor | -150 | -160 | -170 | -178 | -187 | -188 | -193 | -195 | -190 |
| 10MHz internal noise floor  |      | -123 | -156 | -166 | -177 | -178 | -184 |      |      |
| 100MHz internal noise floor |      | -103 | -140 | -162 | -172 | -174 | -178 | -182 | -185 |
| 1GHz internal noise floor   |      | -83  | -122 | -144 | -155 | -155 | -160 | -170 | -175 |

Please add +5dB for guaranteed performance

### High Frequency band Phase Noise Sensitivity

| 1.4  GHz min, Kpni = 0.200 V/rad, typical |      |      |      |      |      |      |      |      |      |
|-------------------------------------------|------|------|------|------|------|------|------|------|------|
| dBc/Hz vs offset (Hz)                     | 1    | 10   | 100  | 1k   | 10k  | 100k | 1M   | 10M  | 40M  |
| External Source noise floor               | -125 | -135 | -150 | -160 | -175 | -183 | -188 | -188 | -183 |
| 2 GHz internal noise floor                |      | -77  | -117 | -139 | -150 | -149 | -153 | -165 | -169 |
| 6 GHz internal noise floor                |      | -67  | -107 | -130 | -140 | -139 | -142 | -152 | -159 |
|                                           |      |      |      |      |      |      |      |      |      |

Please add +5dB for guaranteed performance

#### NXA-26 and NXA-50, Kphi = 0.200 V/rad, typical

|                                    | .,,,      |      |      |      |      |      |      |      |      |
|------------------------------------|-----------|------|------|------|------|------|------|------|------|
| dBc/Hz vs offset (Hz)              | 1         | 10   | 100  | 1k   | 10k  | 100k | 1M   | 10M  | 40M  |
| External Source noise floor        | -125      | -135 | -150 | -160 | -175 | -183 | -188 | -188 | -183 |
| 8 GHz internal noise floor         |           | -65  | -104 | -127 | -139 | -139 | -142 | -154 | -157 |
| 12 GHz internal noise floor        |           | -62  | -100 | -128 | -134 | -134 | -138 | -150 | -153 |
| 24 GHz internal noise floor        |           | -55  | -94  | -117 | -128 | -129 | -131 | -144 | -147 |
| Diagon add i EdD for guaranteed po | rformonoo |      |      |      |      |      |      |      |      |

Please add +5dB for guaranteed performance

#### NXA-50, Kphi = 0.200 V/rad, typical

| dBc/Hz vs offset (Hz)                       | 1    | 10   | 100  | 1k   | 10k  | 100k | 1M   | 10M  | 40M  |
|---------------------------------------------|------|------|------|------|------|------|------|------|------|
| External Source noise floor                 | -120 | -130 | -145 | -155 | -170 | -178 | -180 | -180 | -175 |
| 36 GHz internal noise floor                 |      | -52  | -90  | -118 | -124 | -124 | -128 | -140 | -143 |
| Discourse della FalD (ser average to a dara |      |      |      |      |      |      |      |      |      |

Please add +5dB for guaranteed performance

#### Cross-correlation Settings for specified performance

| Default resolution bandwidth and 2D spurious detection algorithm |    |    |     |     |     |      |     |     |     |
|------------------------------------------------------------------|----|----|-----|-----|-----|------|-----|-----|-----|
| offset (Hz)                                                      | 1  | 10 | 100 | 1k  | 10k | 100k | 1M  | 10M | 40M |
| Averages (# cross-                                               | 10 | 10 | 100 | 100 | 1k  | 1k   | 10k | 10k | 10k |
| correlations)                                                    |    |    |     |     |     |      |     |     |     |

#### Measurement timetable

| Decade up to | Averages | Resolution $BW(Hz)$ | Meas Time (s) |
|--------------|----------|---------------------|---------------|
|              | Averages |                     | 820           |
| 0.1 HZ       | 2        | 4/11                | 039           |
| 1 Hz         | 5        | 4m                  | 2100          |
| 10 Hz        | 5        | 57m                 | 131           |
| 100 Hz       | 7        | 915m                | 12            |
| 1 kHz        | 7        | 915m                | 12            |
| 10 kHz       | 20       | 45                  | 1.7           |
| 100 kHz      | 20       | 45                  | 1.7           |
| 1 MHz        | 20       | 477                 | 1.1           |
| 10 MHz       | 20       | 11k                 | 1             |
| 40 MHz       | 20       | 11k                 | 1             |

Example: for a measurement with default setting from 100 Hz to 1 MHz, time= 20s

External programs installed on the NXA by the customer may affect measurement speed.

Internal Detectors Noise floor plots of the NXA

The NXA Series contains multiple phase detectors to operate over the very wide frequency coverage.



Phase Noise floor at 100 MHz and 4 GHz (external source mode)

NXA-26 and NXA-50 also have built-in optional AM crystal detectors allowing very low noise measurements without the need for any reference source.



Amplitude Noise measurements at 100 MHz and 3.8 GHz

Simple testing using the internal synthesizers

The NXA can measure phase noise on signals without the help of external sources. Two internal synthesizers cover the very wide frequency range of the instrument.



SAW Oscillator at 500 MHz and Synthesizer at 6 GHz (internal sources mode)



Crystal Oscillators at 10 MHz and 100 MHz (internal sources mode)

Using external Reference Oscillators

Below are some examples of crystal oscillators tested by the NXA alone and tested using the addition of external crystal oscillators. This method improves the noise floor of the measurement and speeds up the test time as you may not need as much cross-correlation averages as with the internal synthesizers



10 MHz OCXO tested using internal sources or external sources



100 MHz OCXO tested using internal sources or external sources

#### **Residual Phase Noise Testing**

While Absolute phase noise is widely used and the main testing method for signal generators, additive (or residual) phase noise is extremely useful to measure the added phase noise of 2 ports devices like amplifiers, frequency multipliers or dividers.

With the help of external phase shifters (line stretchers, variable delay lines or trombones), the NXA can fully automate the very low noise measurements, making this test easy to implement in production, even by non-experts.

The Cross-correlation helps a lot to improve the dynamic range compared to signle channel systems, in particular when high power (over +20dBm) is not available.



4 GHz Residual Phase noise (Single channel vs Xcor)

#### Measuring Pulsed signals

In modern radars, signals are pulsed and it is very important to verify the quality of the transmitted signal. The gated CW signal can have a duty cycle as low as 5% and most of the phase noise analyzers cannot handle non CW tones.

The NXA-26 and NXA-50 have special features to allow phase and amplitude noise measurements on pulsed signals. Both absolute and residual noise measurement are possible, making the instrument ideal to test power transmitters as well as complete emitters.



8 GHz 10% duty cycle with 10kHz LPF Absolute Phase noise vs CW

With the help of an external phase shifter, a similar measurement can be done in a Residual (Additive) phase noise method providing very good dynamic range over a 26 GHz frequency coverage.



4 GHz Residual Phase noise (various duty cycles)

Varying the Number of Cross-correlations

In addition to traditional FFT settings to control the resolution bandwidth, number of displayed points and spurious extraction, the user can optimize the dynamic range of the instrument in each decade by adjusting the number of cross-correlation averages.



100 MHz OCXO tested with default FFT settings or "specifications above" settings (internal sources)

## **General Information**

## Front panel information

| Description               | Supplemental information                               |
|---------------------------|--------------------------------------------------------|
| RF Input                  | Type-N F(NXA-6/26) or 1.85mm (NXA-50), 50 ohms nominal |
| Baseband IN               | 2 x SMA (female), 110 ohms, DC coupled                 |
| DC control                | 2 x BNC (female)                                       |
| Local Oscillator IN / OUT | 4 x SMA (female), 50 ohms                              |
| Extension Auxiliary ports | 2 x SMA (female)                                       |
| USB                       | 4 ports (USB 2.0)                                      |
| Display                   | 14 inch TFT color LCD with touch screen                |
|                           | 1366 x 768 resolution                                  |
| Extractible Hard Drive    | Removable 64GB SSD Sata II drive                       |

## Rear panel information

| Description | Supplemental information   |
|-------------|----------------------------|
| USB         | 4 ports (USB 2.0)          |
| LAN port    | RJ-45 Gigabit Ethernet     |
| Video       | VGA                        |
|             | DVI                        |
| IO ports    | 2 x RS232                  |
|             | 1 x LPT                    |
| PS2         | Shared kbd/ms port         |
| Audio       | 3 audio jacks              |
| DC          | +12V Input port            |
| AC          | 100-240 VAC 50/60Hz 4A max |
| FAN         | Intake                     |

# Analyzer environment and dimensions

| Description                       | Supplemental information                                 |
|-----------------------------------|----------------------------------------------------------|
| Operating environment             |                                                          |
| Temperature                       | +10 degC to +40 degC                                     |
| Humidity                          | RH 20% to 80% at wet bulb temp.<29 degC (non-condensing) |
| Altitude                          | 0 to +2 000 m                                            |
| Non-operating storage environment |                                                          |
| Temperature                       | -10 degC to +60 degC                                     |
| Humidity                          | RH 20% to 90% at wet bulb temp.<40 degC (non-condensing) |
| Altitude                          | -427 to +4 810 m                                         |
| Vibration                         | 0.5 G maximum, 5 Hz to 500 Hz                            |
| Instrument dimensions             | See figure below                                         |
| Weight (NET)                      | 35 kg                                                    |

## **Dimensions information**



Front view



Rear view



Side view

# **Display functions**

| Description         | Supplemental information                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement windows | Up to 2 windows                                                                                                                                                                                                                                                                                                                      |
| Spectrum Window     | 8 traces or specification lines<br>trace color, thickness adjustable by trace and by<br>type (noise in dBc/Hz and spurious in dBc)<br>Math tools: Addition, subtraction, multiplication or<br>division of trace data<br>Combination of traces (concatenate tool)<br>X-axis adjustable by decade<br>Y-axis min/max values set by user |
| Time domain window  | Baseband / Phase detector voltage display<br>versus time                                                                                                                                                                                                                                                                             |
| Marker functions    | 7 independent markers<br>marker color matches trace color                                                                                                                                                                                                                                                                            |
| Jitter and Variance | Plots can be obtained from the phase noise plots to display the frequency stability or jitter density                                                                                                                                                                                                                                |
| Special Processing  | A Radar computation function is included in the<br>math tools as well as smoothing functions with<br>variable parameters<br>Additional specialty functions can be added in the<br>software, please contact Noise XT for details.                                                                                                     |

### **Data Processing Capabilities**

| Description              | Supplemental information                               |
|--------------------------|--------------------------------------------------------|
| Graphical user interface | The analyzer uses a graphical user interface           |
|                          | based on Windows <sup>®</sup> OS                       |
|                          | The user can use the touch screen, the                 |
|                          | keyboard, the mouse or any combination of the          |
|                          | three.                                                 |
| Limit-line test          | Test limits can be defined and stored on trace         |
|                          | memories like regular measurements                     |
|                          | lest limits are defined by a list of 7 X-Y             |
| Internal Data Ctarage    | coordinates                                            |
| Internal Data Storage    | Internal Removable SSD drive that contains             |
|                          | calibration tables                                     |
|                          | This internal SSD drive may be used to store           |
|                          | measurements and configuration files                   |
| External Data Storage    | USB thumb drives may be connected to any USB           |
| 5                        | port                                                   |
| File Management          | The NXA uses proprietary format to store plots         |
|                          | (*.plot) that can only read by Noise XT's              |
|                          | products. However, there are multiple export           |
|                          | formats either as text files that can be open in       |
|                          | any spreadsheet software (tab separated)               |
| Printing                 | Any Windows <sup>®</sup> OS compatible printer may be  |
|                          | used, a default pdf printer is installed by default    |
|                          | Printing can also be done to BMP, JPG and PNG          |
|                          | picture files.                                         |
| Automation               | Remote control of the NXA can be done over the         |
|                          | CP/IP layer (even when no Ethemet cable is connected)  |
|                          | National Instruments LabView® examples and             |
|                          | Manonal monuments Labylew $\sim$ examples and          |
|                          | wilcrosoft vBA <sup>®</sup> examples are available for |
|                          | The NVA care also be remetally controlled as an        |
| GHD                      | CPIR with the help of an optional National             |
|                          | Instruments GPIB-USB-HS adapter.                       |



#### Visit our RF & µW capabilities

Arcale : <u>www.arcale.net</u> RF Suite : <u>www.rfsystems.arcale.net</u> Qualitysource : <u>www.qualitysource.fr</u> Noise XT : <u>www.noisext.com</u>