DNA

Digital Phase Noise and Frequency Analyzer

2 MHz to 400 MHz

The DNA is the highest performance Frequency Stability and Phase Noise Analyzer with unique digital architecture that allows down to thermal noise and state of the Art close-in phase noise performance with a limitation set by the user's reference clock. The DNA also includes built-in oscillators for advanced autonomous operation.

The key advantages of this platform are not only the extremely low noise floor but the fact that it does not require any phase locking of a reference as all phase detector-based phase noise analyzers do. Its amazing phase noise extraction process even works on different frequencies, the reference can be at a different frequency than the DUT.

No isolation problem, no phase lock loop bandwidth, no DC FM tuning port required; this is so many benefits to avoid errors and get simple, fast and reliable performance. And as phase noise is just one of the two ways of analyzing signal purity and stability, the DNA also integrates an excellent frequency stability analyzer making is the new Time and Frequency analyzer standard for the advanced research and development industry.

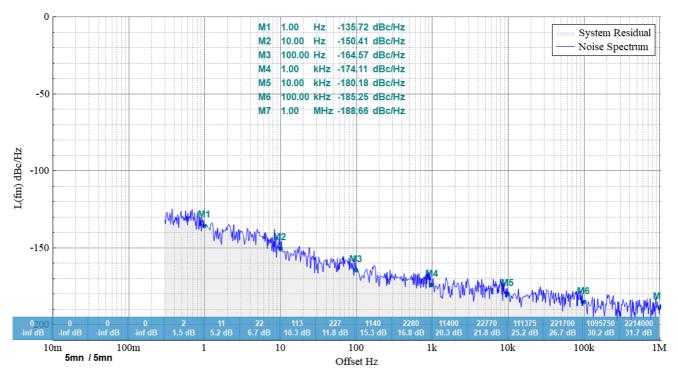
All specifications in this document are typical values unless specified otherwise.

RF Input Port

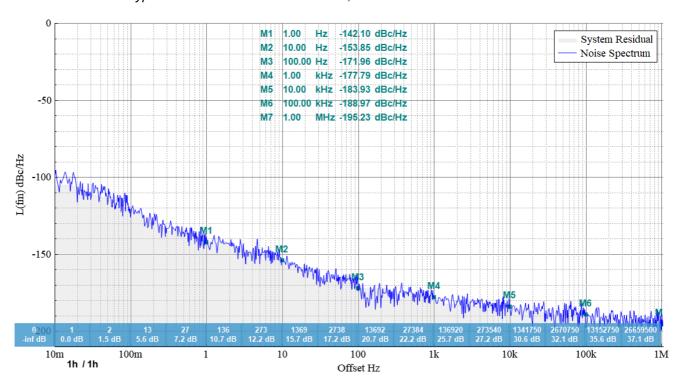
Description	Specification
RF IN connector	Type-N Female, 50 ohms nominal
RF IN frequency range	2 MHz to 400 MHz
RF IN measurement level	-10 dBm to +20 dBm
Input damage level	AC > +23dBm, 0V DC max

Phase Noise Analyzer performance

Description	Specification
RF IN frequency range	2 MHz to 400 MHz
Measurement parameters	SSB noise (dBc/Hz), Spurious (dBc), Allan & overlapped Allan Variance, Hadamar & overlapped Hadamar variance. Fractional frequency noise chronogram.
Number of traces	20 data traces for SSB phase noise and Frequency stability.
Number of markers	20
Offset frequency range	1 mHz to 1 MHz, 10 MHz Typical
Phase Noise accuracy	+/- 2 dB
SSB noise sensitivity	See Table for complete values
Typical residual phase noise 15min measurement 10 MHz	-137dBc/Hz@1Hz -190dBc/Hz@1MHz
100 MHz	-121dBc/Hz@1Hz -194dBc/Hz@10MHz
Enhanced sensitivity	Fully continuous Cross-correlation method up to millions of averages
Reference Local Oscillator	Internal or External Sources (single or dual)
	< 7E-14 (5Hz ENBW) < 5E-16 (5Hz ENBW)
Residual spurious response level (measurement engine), excluding AC power related spurs	-50 dBc at 1 Hz offset -70 dBc at 10 Hz offset -90 dBc at 100 Hz offset <-110 dBc above 1kHz offset
Spurious detection Algorithm	Adjustable Peak detection based on noise statistical information
Measurement time	See time table
Resolution Bandwidth	Variable settings in each independent decade Based on 1024 FFTs in a cascaded continuous noise decimation chain
Internal Source output power	+10 dBm +/- 3 dB



Residual Phase Noise

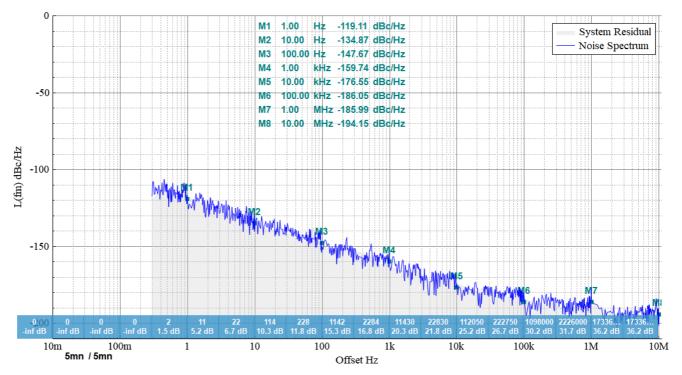

10 MHz residual phase noise, nominal Conditions: RF +15dBm Input Power.

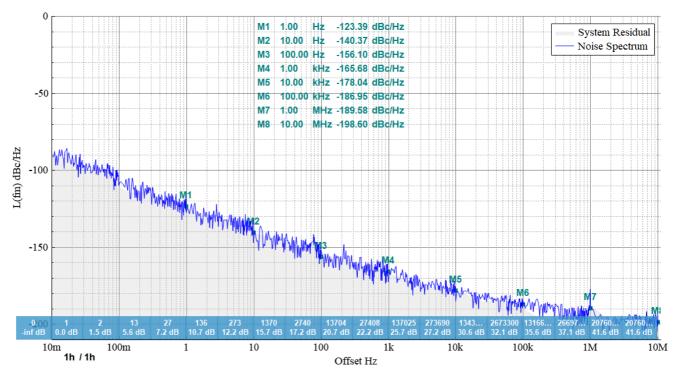
Measurement time	dBc/Hz vs Offset (Hz)	1	10	100	1k	10k	100k	1M
5 min	Typical Phase Noise	-135	-150	-164	-174	-180	-185	-188
15 min	Typical Phase Noise	-137	-151	-166	-175	-182	-187	-190
60 min	Typical Phase Noise	-141	-154	-170	-177	-184	-189	-192

Please add +5dB for guaranteed performance

Typical 10 MHz residual Phase Noise, 5min measurement time

Typical 10 MHz residual Phase Noise, 60 min measurement time



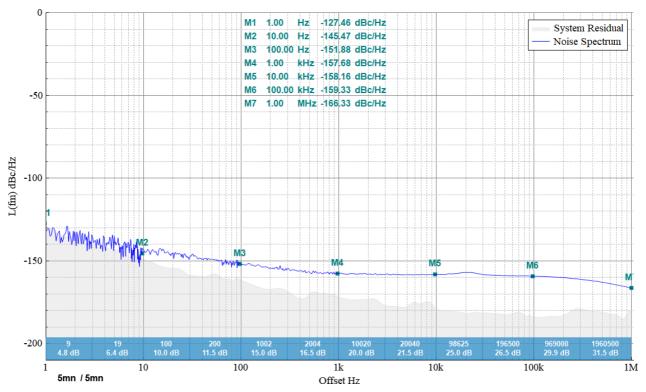

100 MHz residual phase noise, nominal Conditions: RF +15 dBm Input Power.

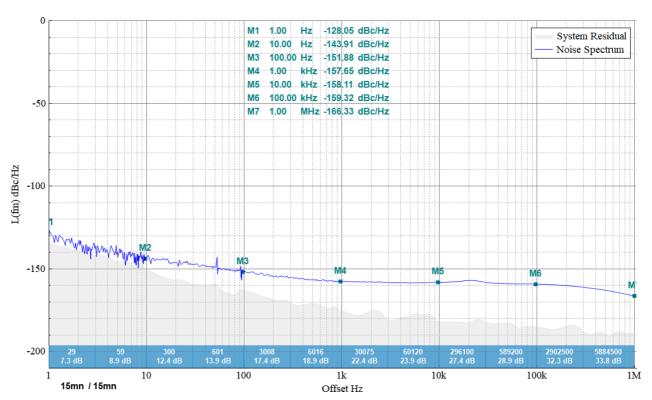
Measurement time	dBc/Hz vs Offset (Hz)	1	10	100	1k	10k	100k	1M	10M option
5 min	Typical Phase Noise	-119	-134	-146	-159	-175	-185	-185	-192
15 min	Typical Phase Noise	-121	-136	-150	-164	-178	-185	-188	-192
60 min	Typical Phase Noise	-123	-140	-156	-165	-178	-186	-189	-192

Please add +5dB for guaranteed performance

Typical 100 MHz residual Phase Noise, 5 min measurement time

Typical 100 MHz residual Phase Noise, 60 min measurement time

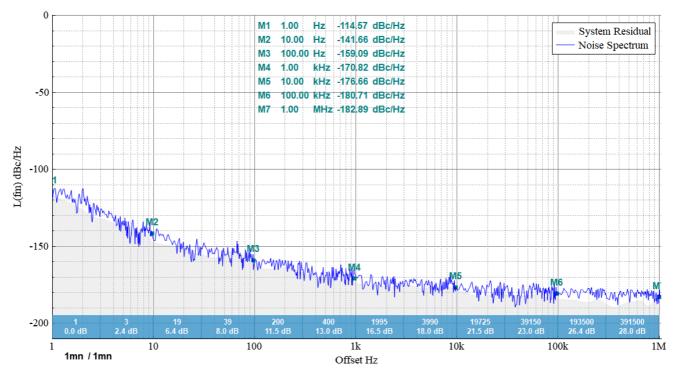



Measurement time

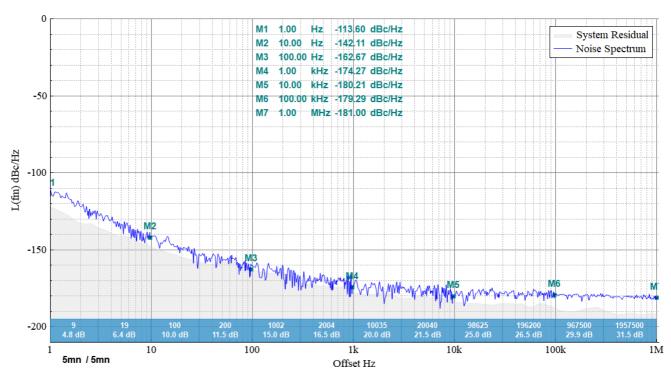
The DNA can measure continuously up to days and automatically uses the maximum number of cross-correlation averages. The only thing that can be set is the measurement time you wish to allow to this test. Measurement time depends on reference specification and expected result.

The results shows below are using the internal reference.

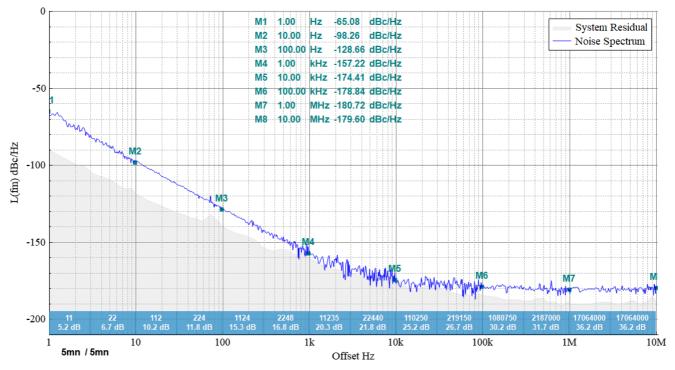
5 MHz OCXO / 5 min measurement time phase noise plot



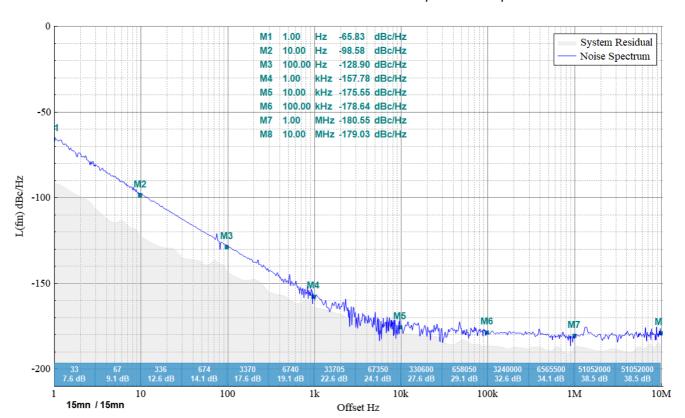
5 MHz OCXO / 15 min measurement time phase noise plot



10 MHz OCXO / 1 min measurement time phase noise plot



10 MHz OCXO / 5 min measurement time phase noise plot



100 MHz OCXO / 5 min measurement time phase noise plot

100 MHz OCXO / 15 min measurement time phase noise plot

Frequency Stability Measurements

The DNA has a feature to measure frequency stability and display plots from 0.01 to 10.000 seconds.

This measurement can be done at any frequency where the regular phase noise plots can be done.

It uses the instantaneous frequency measure between DUT and reference. An external 10 MHz reference can be used.

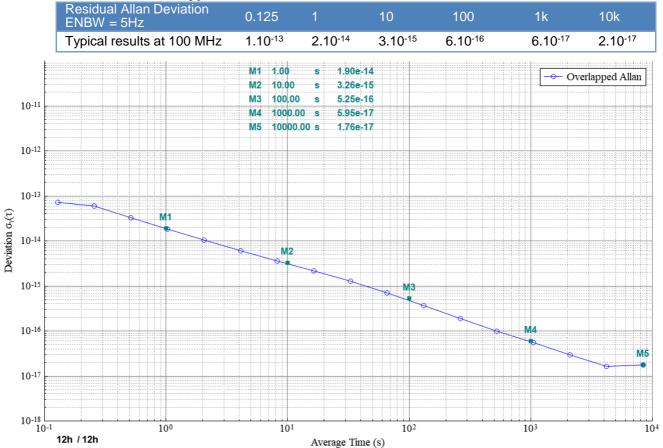
The frequency stability measurements available are:

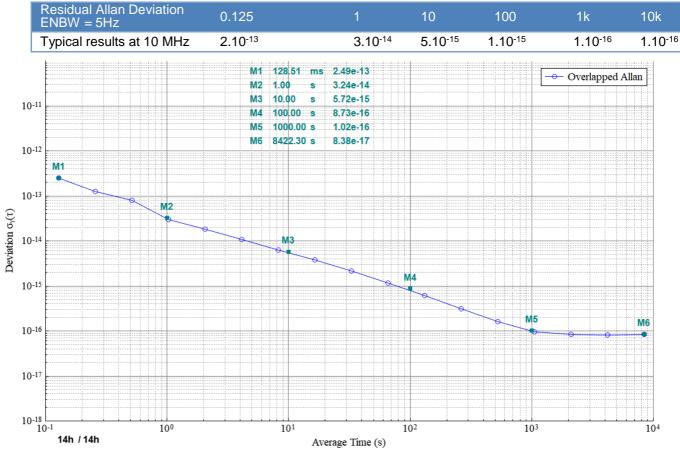
- Allan Variance & Overlapped Allan variance
- Hadamar & Overlapped Hadamar variance

There are two methods for measuring the variance: the auto-variance and the cross-variance.

- The auto-variance method uses the instantaneous fractional frequency between the DUT and the first reference. It is noted that both the DUT and the first reference contribute to this value.
- The cross-variance method uses the instantaneous frequency between the DUT and both references. This method allows minimizing the contribution of the references on the variance measurement.

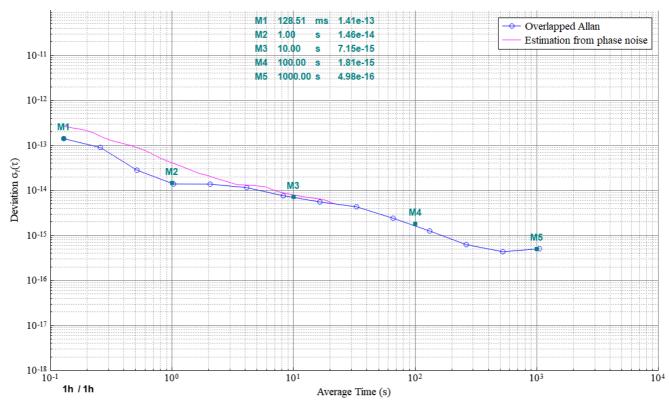
All frequency measurement data is available as text files for external post processing through any statistical analysis software.


(*1) The best results will be obtained by using the cross-variance and an external reference 10 with a good stability.



Residual Allan Deviation Typical results:

100 MHz / **12H measurement time** Residual Overlapped Allan Deviation ENBW=5Hz


10 MHz / **14H measurement time** Residual Overlapped Allan Deviation ENBW=5Hz

Residual Allan cross Deviation ENBW = 5Hz	1	10	100	1k	10k
Typical results at 5 MHz	4.10 ⁻¹⁴	8.10 ⁻¹⁵	2.10 ⁻¹⁵	5.10 ⁻¹⁶	

5 MHz/60min measurement time Residual Overlapped Allan cross variance Deviation ENBW=5Hz

General Information

Front panel information

Description	Supplemental information
RF Input	N type (female), 50 ohms
Reference Oscillator Input/output	SMA type (female), 50 ohms
Digitizer channel A to D Input	SMA type (female), 50 ohms

Rear panel information

Description	Supplemental information
RJ-45	Gigabit Ethernet
AC	100-240 VAC 50/60Hz 2A max
FAN	Exhaust

Analyzer environment and dimensions

Description	Supplemental information		
Operating environment			
Temperature	+10 °C to +40 °Celsius		
Humidity	RH 20% to 80% at wet bulb temp.<29 °C (non-condensing)		
Non-operating storage environment			
Temperature	-10 °C to +60 °C		
Humidity	RH 20% to 90% at wet bulb temp.<40 °C (non-condensing)		
Vibration	0.5 G maximum, 5 Hz to 500 Hz		
Instrument dimensions	19" 4U		
Weight (NET)	Base is 10 kg + options		

Display functions

Description	Supplemental information
Spectrum Window	10 traces or specification lines trace color, thickness adjustable by trace and by type (noise in dBc/Hz and spurious in dBc) Math tools: Addition, subtraction, multiplication or division of trace data Combination of traces (concatenate tool) X-axis adjustable by decade Y-axis min/max values set by user
Marker functions	20 independent markers
Frequency stability plots	In addition to a real-time measurement based on instantaneous fractional frequency values, the frequency stability is also estimated from the phase noise trace.
Fractional Frequency Plot	A fractional frequency plot versus time can be added. This plot can help to see if the DUT has some transitory frequency instabilities.
Special Processing	Additional specialty functions can be added in the software, please contact Noise XT for details.

Data Processing Capabilities

Description	Supplemental information
Graphical user interface	The analyzer uses a graphical user interface based on Windows [®] 10 OS with a Touch Screen The user can use keyboard, the mouse or any combination of the two.
File Management	The DNA uses *.csv format to store and load traces.
Limit-line test	Any limit-line test can be done and load using the *.csv format.
Raw Data (Option)	Raw phase data (radian) at the output of the four channels can be optionally recorded into disk for post processing. It is noted that the phase values have been already unwrapped.
Internal Data Storage	Internal Removable SSD drive (option) that contains Operating System, DNA Operating Software and calibration tables This HDD/SSD drive may be used to store measurements and configuration files
Removable Internal Data Storage (Option)	Internal Removable SSD drive (option) that contains Operating System, DNA Operating Software and calibration tables This HDD/SSD drive may be used to store measurements and configuration files
External Data Storage	USB thumb drives may be connected to any USB port of the DNA
Printing	Any Windows [®] OS compatible printer may be used.
Automation	Remote control of the DNA can be done over the TCP/IP.

